Visualizing the perturbation of cellular cyclic di-GMP levels in bacterial cells.

نویسندگان

  • Chun Loong Ho
  • Kavin Shi Jie Chong
  • Jamila Akosua Oppong
  • Mary Lay Cheng Chuah
  • Suet Mien Tan
  • Zhao-Xun Liang
چکیده

Cyclic di-GMP (c-di-GMP) has emerged as a prominent intracellular messenger that coordinates biofilm formation and pathogenicity in many bacterial species. Developing genetically encoded biosensors for c-di-GMP will help us understand how bacterial cells respond to environmental changes via the modulation of cellular c-di-GMP levels. Here we report the design of two genetically encoded c-di-GMP fluorescent biosensors with complementary dynamic ranges. By using the biosensors, we found that several compounds known to promote biofilm dispersal trigger a decline in c-di-GMP levels in Escherichia coli cells. In contrast, cellular c-di-GMP levels were elevated when the bacterial cells were treated with subinhibitory concentrations of biofilm-promoting antibiotics. The biosensors also revealed that E. coli cells engulfed by macrophages exhibit lower c-di-GMP levels, most likely as a response to the enormous pressures of survival during phagocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic di-GMP as an Intracellular Signal Regulating Bacterial Biofilm Formation

Cyclic di-GMP is a novel second messenger in bacteria that was first described as an allosteric activator of cellulose synthase in Gluconacetobacter xylinus. It is now established that this nucleotide regulates a range of functions including developmental transitions, aggregative behavior, adhesion, biofilm formation and virulence in diverse bacteria. The level of cyclic di-GMP in bacterial cel...

متن کامل

Cyclic di-GMP signalling and the regulation of bacterial virulence

Signal transduction pathways involving the second messenger cyclic di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate] occur widely in bacteria where they act to link perception of environmental or intracellular cues and signals to specific alterations in cellular function. Such alterations can contribute to bacterial lifestyle transitions including biofilm formation and virulence. The cellu...

متن کامل

Cyclic-di-GMP levels affect Pseudomonas aeruginosa fitness in the presence of imipenem.

A large number of genes coding for enzymes predicted to synthesize and degrade 3'-5-cyclic diguanylic acid (c-di-GMP) is found in most bacterial genomes and this dinucleotide emerged as an intracellular signal-controlling bacterial behaviour. An association between high levels of c-di-GMP and antibiotic resistance may be expected because c-di-GMP regulates biofilm formation and this mode of gro...

متن کامل

Cyclic di-GMP signaling in bacteria: recent advances and new puzzles.

Cyclic di-GMP [bis-(3 -5 )-cyclic di-GMP] (Fig. 1) is a novel second messenger in bacteria that was first described as an allosteric activator of cellulose synthase in Gluconacetobacter xylinus (49). It is now established that this nucleotide is almost ubiquitous in bacteria, where it regulates a range of functions including developmental transitions, aggregative behavior, adhesion, biofilm for...

متن کامل

Exploring environmental control of cyclic di-GMP signaling in Vibrio cholerae by using the ex vivo lysate cyclic di-GMP assay (TELCA).

Vibrio cholerae senses its environment, including the surrounding bacterial community, using both the second messenger cyclic di-GMP (c-di-GMP) and quorum sensing (QS) to regulate biofilm formation and other bacterial behaviors. Cyclic di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. V. cholerae encodes a complex network of 61 enzymes p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 2  شماره 

صفحات  -

تاریخ انتشار 2013